Variationally Derived Discontinuity Factors for the Asymptotic Homogenized Diffusion Equation
نویسندگان
چکیده
منابع مشابه
Simultaneous diffusion and homogenization asymptotic for the linear Boltzmann equation
This article is on the simultaneous diffusion approximation and homogenization of the linear Boltzmann equation when both the mean free path ε and the heterogeneity length scale η vanish. No periodicity assumption is made on the scattering coefficient of the background material. There is an assumption made on the heterogeneity length scale η that it scales as ε for β ∈ (0,∞). In one space dimen...
متن کاملSolutions of diffusion equation for point defects
An analytical solution of the equation describing diffusion of intrinsic point defects in semiconductor crystals has been obtained for a one-dimensional finite-length domain with the Robin-type boundary conditions. The distributions of point defects for different migration lengths of defects have been calculated. The exact analytical solution was used to verify the approximate numerical solutio...
متن کاملFinite Element Methods for Convection Diffusion Equation
This paper deals with the finite element solution of the convection diffusion equation in one and two dimensions. Two main techniques are adopted and compared. The first one includes Petrov-Galerkin based on Lagrangian tensor product elements in conjunction with streamlined upwinding. The second approach represents Bubnov/Petrov-Galerkin schemes based on a new group of exponential elements. It ...
متن کاملAsymptotic distributions of Neumann problem for Sturm-Liouville equation
In this paper we apply the Homotopy perturbation method to derive the higher-order asymptotic distribution of the eigenvalues and eigenfunctions associated with the linear real second order equation of Sturm-liouville type on $[0,pi]$ with Neumann conditions $(y'(0)=y'(pi)=0)$ where $q$ is a real-valued Sign-indefinite number of $C^{1}[0,pi]$ and $lambda$ is a real parameter.
متن کاملAsymptotic behavior for a singular diffusion equation with gradient absorption
We study the large time behavior of non-negative solutions to the singular diffusion equation with gradient absorption ∂ t u − ∆ p u + |∇u| q = 0 in (0, ∞) × R N , for p c := 2N/(N + 1) < p < 2 and p/2 < q < q * := p − N/(N + 1). We prove that there exists a unique very singular solution of the equation, which has self-similar form and we show the convergence of general solutions with suitable ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nuclear Science and Engineering
سال: 2017
ISSN: 0029-5639,1943-748X
DOI: 10.13182/nse16-27